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Overview

Revision of LP theory and simplex algorithms

Computational techniques for serial simplex

Bound-flipping ratio test (dual simplex)
Hyper-sparsity
Cost perturbation (dual simplex)

Computational techniques for parallel simplex

Structured LP problems
General LP problems
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Solving LP problems: Background

minimize f = cTx subject to Ax = b x ≥ 0

Background

Fundamental model in optimal
decision-making

Solution techniques

◦ Simplex method (1947)
◦ Interior point methods (1984)

Large problems have

◦ 103–108 variables
◦ 103–108 constraints

Matrix A is usually sparse and
may be structured

Example

STAIR: 356 rows, 467 columns and 3856 nonzeros
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Solving LP problems: Background

x2

x3

x1

K

minimize f = cTx subject to Ax = b x ≥ 0

A vertex of the feasible region K ⊂ Rn has

m basic components, i ∈ B
n −m zero nonbasic components, j ∈ N

The equations and x are partitioned according to B ∪N
BxB + NxN = b ⇒ xB = B−1(b − NxN) = b̂ − N̂xN

since the basis matrix B is nonsingular

Reduced objective is then f = f̂ + ĉTN xN , where f̂ = cTB b̂

and ĉTN = cTN − cTB B
−1N

For xN = 0, partition yields an optimal solution if there is
Primal feasibility b̂ ≥ 0; Dual feasibility ĉN ≥ 0
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Solving dual LP problems: Optimality and the dual simplex algorithm

Consider the dual problem

maximize fD = bTy subject to ATy + s = c s ≥ 0

Equations, s and c partitioned according to B ∪N as

[
BT

NT

]
y +

[
sB

sN

]
=

[
cB

cN

]
⇒

{
y = B−T (cB − sB)

sN = ĉN + N̂T sB

Reduced objective is fD = f̂ − b̂
T
sB

For sB = 0, partition yields an optimal solution if there is
Primal feasibility b̂ ≥ 0; Dual feasibility ĉN ≥ 0

Dual simplex algorithm for an LP is primal algorithm applied to the dual problem

Structure of dual equations allows dual simplex algorithm to be applied to primal
simplex tableau
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Primal simplex algorithm

Assume b̂ ≥ 0 Seek ĉN ≥ 0

Scan ĉj < 0 for q to leave N
Scan b̂i/âiq > 0 for p to leave B

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B
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Dual simplex algorithm: Choose a row

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B

RHS

b̂

b̂p

N

B
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Dual simplex algorithm: Choose a column

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âT
p

ĉTN

âpq

ĉq

N

B
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Dual simplex algorithm: Update reduced costs and RHS

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉTN := ĉTN + αD â
T
p αD = −ĉq/âpq
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Dual simplex algorithm: Data required

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉTN := ĉTN + αD â
T
p αD = −ĉq/âpq

Data required

Pivotal row âTp = eT
p B
−1N

Pivotal column âq = B−1aq
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Dual simplex algorithm

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂ − αP âq αP = b̂p/âpq

Update ĉTN := ĉTN + αD â
T
p αD = −ĉq/âpq

Data required

Pivotal row âTp = eT
p B
−1N

Pivotal column âq = B−1aq

Why does it work?

Objective improves by
b̂p × ĉq
âpq

each iteration
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Solving LP problems: Primal or dual simplex?

Primal simplex algorithm

Traditional variant

Solution generally not primal feasible when (primal) LP is tightened

Dual simplex algorithm

Preferred variant

Easier to get dual feasibility

More progress in many iterations

Solution dual feasible when primal LP is tightened
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Simplex method: Computation

Standard simplex method (SSM): Major computational component

RHS

N̂

ĉT
N

b̂B

N Update of tableau: N̂ := N̂ − 1

âpq
âqâ

T
p

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via BTπp = ep BTRAN and âTp = πT
p N PRICE

Pivotal column via B âq = aq FTRAN Represent B−1 INVERT

Update B−1 exploiting B̄ = B + (aq − Bep)eT
p UPDATE
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Simplex method: Computation

Representing B−1: INVERT

Form B = LU using sparsity-exploiting Markowitz technique

L unit lower triangular

U upper triangular

Representing B−1: UPDATE

Exploit B̄ = B + (aq − Bep)eT
p to limit refactorization

Many schemes: simplest is product form

B̄ = B + (aq − Bep)eT
p = B[I + (âp − ep)eT

p ] = BE

where E is easily invertible
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Simplex method: Mittelmann test set

Industry standard set of 40 LP problems

Rows Cols Nonzeros Rows
Cols

Nonzeros
Rows× Cols

Nonzeros
max(Rows,Cols)

Min 960 1560 38304 1/255 0.0005% 2.2
Geomean 54256 72442 910993 0.75 0.02% 6.5
Max 986069 1259121 11279748 85 16% 218.0

Mittelmann solution time measure

Unsolved problems given “timeout” solution time

Shift all solution times up by 10s

Compute geometric mean of logs of shifted times

Solution time measure is exponent of geometric mean shifted down by 10s
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Dual simplex: Bound-flipping Ratio Test (BFRT)



Dual simplex: Bound-flipping Ratio Test (BFRT)

General bounded equality problem is

minimize f = cTx subject to
[
A I

]
x = b l ≤ x ≤ u

At a vertex, nonbasic variables xN take values vN of lower or upper bounds

Equations and x partitioned according to B ∪N as

BxB + NxN = b ⇒ xB = B−1(b − NxN) = b̂ − N̂δN

where xN = vN + δN and b̂ = B−1(b − NvN)

For δN = 0, the partition yields an optimal solution if there is

Primal feasibility l B ≤ b̂ ≤ uB Dual feasibility

{
ĉj ≥ 0 xj = lj

ĉj ≤ 0 xj = uj
j ∈ N
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Dual simplex: Bound-flipping Ratio Test (BFRT)

Reduced objective is

fD = f̂ − (b̂ − l )T s+B − (u − b̂)T s−B

Suppose p ∈ B is chosen such that b̂p < lp
so sp is increased from zero

As fD increases, some sj , j ∈ N is zeroed

If xj “flips bound” then b̂p increases

If still have b̂p < lp, then

sj changes sign
sp can be increased further

fD

sp

d5

d3

d1

αj2

d4

αj1 αj3 αj4

d2

In general
Find {α1, α2, . . .} (easily)
Sort breakpoints as {αj1 , αj2 , . . .}
Analyse d1 = lp − b̂p > 0 and (by recurrence) {d2, d3, . . .} for sign change

Multiple iteration “progress”, with only one basis change and set of B/FTRANs
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Simplex method: Exploiting hyper-sparsity



Simplex method: Exploiting hyper-sparsity

Recall: major computational components

BTRAN: Form πp = B−Tep

PRICE: Form âTp = πT
p N

FTRAN: Form âq = B−1aq

Phenomenon of hyper-sparsity

Vectors ep and aq are sparse

Results πp, âTp and âq may be sparse—because B−1 is sparse

In BTRAN, πp is a row of B−1

In PRICE, âT
p is a linear combination of a few rows of N

In FTRAN, âq is a linear combination of a few columns of B−1
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Simplex method: Exploiting hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b

Optimal B for LP problem stair

has density 2.5%
B−1 has density of 58%, so B−1b
is typically dense
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Simplex method: Exploiting hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b

Optimal B for LP problem pds-02

has density 0.07%
B−1 has density of 0.52%, so B−1b
is typically sparse—when b is sparse
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Simplex method: Exploiting hyper-sparsity

Use solution of Lx = b

To illustrate the phenomenon of hyper-sparsity
To demonstrate how to exploit hyper-sparsity

Apply principles to other triangular solves in the simplex method
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Simplex method: Exploiting hyper-sparsity

Recall: Solve Lx = b using

function ftranL(L, b, x)

r = b

for all j ∈ {1, . . . ,m} do
for all i : Lij 6= 0 do

ri = ri − Lij rj
x = r

When b is sparse

Inefficient until r fills in
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Simplex method: Exploiting hyper-sparsity

Better: Check rj for zero

function ftranL(L, b, x)

r = b

for all j ∈ {1, . . . ,m} do
if rj 6= 0 then

for all i : Lij 6= 0 do
ri = ri − Lij rj

x = r

When x is sparse

Few values of rj are nonzero

Check for zero dominates

Requires more efficient identification
of set X of indices j such that rj 6= 0

Gilbert and Peierls (1988)
H and McKinnon (1998–2005)
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Simplex method: Exploiting hyper-sparsity

Recall: major computational components

FTRAN: Form âq = B−1aq

BTRAN: Form πp = B−Tep

PRICE: Form âTp = πT
p N

BTRAN: Form πp = B−Tep

Transposed triangular solves

LTx = b has xi = bi − lTi x

Hyper-sparsity: l
T
i x typically zero

Also store L (and U) row-wise and
use FTRAN code

PRICE: Form âTp = πT
p N

Hyper-sparsity: πT
p is sparse

Store N row-wise

Form âTp as a combination of

rows of N for nonzeros in πT
p

H and McKinnon (1998–2005)
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Simplex method: Exploiting hyper-sparsity - effectiveness

Testing environment

Mittelmann test set of 40 LPs

HiGHS dual simplex solver

Time limit of 10,000 seconds

Results

When exploiting hyper-sparsity: solves 37 problems

When not exploiting hyper-sparsity (in BTRAN, FTRAN and PRICE): solves 34
problems

Min Geomean Max

Iteration count increase 0.75 1.08 3.17
Solution time increase 0.83 2.31 67.13
Iteration speed decrease 0.92 2.14 66.43

Mittelmann measure 2.57
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Dual simplex: Cost perturbation



Dual simplex: Cost perturbation

Dual degeneracy

If some nonbasic dual values cTN − cTB B
−1N are zero, the vertex is dual

degenerate

At a dual degenerate vertex, an iteration of the dual simplex algorithm may not
lead to a strict increase in the dual objective

Stalling or cycling may occur

Cost perturbation

Add a small random value to some/all of the cost coefficients c

Nonbasic dual values then (at worst) take small positive values

An iteration of the dual simplex algorithm yields (at least) a small positive
increase in the dual objective

When optimal, remove perturbations

May require simplex iterations to regain optimality
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Dual simplex: Cost perturbation - effectiveness

Results using Mittelmann test set

With cost perturbation: HiGHS solves 37/40 problems

Without cost perturbation: solves 27 problems

Min Geomean Max

Iteration count increase 0.80 1.36 7.21
Solution time increase 0.57 1.46 13.31
Iteration speed decrease 0.49 1.07 4.02

Mittelmann measure 3.80
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Computational techniques for parallel simplex: Structured LP problems



PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize cT
0 x0 + cT

1 x1 + cT
2 x2 + . . . + cT

NxN

subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables x i ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete
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PIPS-S: Stochastic MIP problems

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity from wind generation

Solution via branch-and-bound

Solve root using parallel IPM solver PIPS Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S
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PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

minimize cT
1 x1 + cT

2 x2 + . . . + cT
NxN + cT

0 x0

subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0
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PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




W B
i are columns corresponding to nB

i basic variables in scenario i



T B
1
...

T B
N

AB


 are columns corresponding to nB

0 basic first stage decisions

.
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PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




B is nonsingular so
W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known

.
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PIPS-S: Exploiting problem structure

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination
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PIPS-S: Overview

Scope for data parallelism

Parallel Gaussian elimination yields block LU decomposition of B

Scope for data parallelism in block forward and block backward substitution

Scope for data parallelism in PRICE

Implementation

Written in C++ with MPI

Dual simplex

Based on NLA routines in clp

Distribute problem data over processors

Perform data-parallel BTRAN, FTRAN and PRICE over processors

Lubin, H, Petra and Anitescu (2013)
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PIPS-S: Results

On Fusion cluster: Performance relative to clp

Dimension Cores Storm SSN UC12 UC24

m + n = O(106)
1 0.34 0.22 0.17 0.08

32 8.5 6.5 2.4 0.7

m + n = O(107) 256 299 45 67 68

On Blue Gene
Instance of UC12

m + n = O(108)

Requires 1 TB of RAM

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14
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Computational techniques for parallel simplex: General LP problems



HiGHS: Parallel simplex for general LP problems

Overview

Written in C++ to study parallel simplex

Dual simplex with standard algorithmic enhancements

Efficient numerical linear algebra

Concept

High performance serial solver (hsol)

Exploit limited task and data parallelism in standard dual RSM iterations (sip)

Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H
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HiGHS: Single iteration parallelism with sip option

Computational components appear sequential

Each has highly-tuned sparsity-exploiting serial implementation

Exploit “slack” in data dependencies

Julian Hall High performance computational techniques for the simplex method 42 / 47



HiGHS: Single iteration parallelism with sip option

Overlap the expensive FTRAN with
PRICE, CHUZC, and then the
subsequent (cheaper) FTRANs

Exploit data parallelism in PRICE to
form âTp = πT

p N, and in the expensive
pass of CHUZC

Overlap the cheaper FTRANs, and then
the operations to update edge weights
and the reduced RHS

Other components performed serially

Only four worthwhile threads unless
n� m so PRICE dominates

Huangfu and H (2014)
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HiGHS: Multiple iteration parallelism with pami option

Perform standard dual simplex minor iterations for rows in set P (|P| � m)

Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

âT
P

ĉTN

b̂

b̂P
B

N

Task-parallel multiple BTRAN to form πP = B−TeP

Data-parallel PRICE to form âTp (as required), and then data-parallel CHUZC

Task-parallel multiple FTRAN for primal, dual and weight updates

Huangfu and H (2011–2014)
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HiGHS: Multiple iteration parallelism with pami - effectiveness

Serial overhead of pami

HiGHS pami solver in serial: solves 34/40 problems

Min Geomean Max

Iteration count increase 0.43 1.02 2.98
Solution time increase 0.31 1.62 5.36
Iteration speed decrease 0.69 1.59 5.11

Mittelmann measure 2.08

Parallel speed-up of pami with 8 threads

Min Geomean Max

Iteration count decrease 1.00 1.00 1.00
Solution time decrease 1.15 1.88 2.39
Iteration speed increase 1.15 1.88 2.39
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HiGHS: Multiple iteration parallelism with pami - effectiveness

Performance enhancement using parallel pami with 8 threads

Min Geomean Max

Iteration count decrease 0.34 0.98 2.34
Solution time decrease 0.34 1.16 6.44
Iteration speed increase 0.38 1.18 2.75

Mittelmann measure 1.21

Observations

There is significant scope to improve pami performance further

Use pami tactically: switch it off if it is ineffective

Commercial impact

Huangfu applied the parallel dual simplex techniques within the xpress solver

For much of 2013–2018 the xpress simplex solver was the best in the world
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Summary

High performance simplex

Many (more) algorithmic and
computational tricks in serial

Parallel simplex has some impact on
performance

Tune techniques to problem at
run-time

J. A. J. Hall and K. I. M. McKinnon.

Hyper-sparsity in the revised simplex method and how to
exploit it.
Computational Optimization and Applications,
32(3):259–283, December 2005.

Q. Huangfu and J. A. J. Hall.

Parallelizing the dual revised simplex method.
Mathematical Programming Computation, 10(1):119–142,
2018.

M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.

Parallel distributed-memory simplex for large-scale
stochastic LP problems.
Computational Optimization and Applications,
55(3):571–596, 2013.
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