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Overview

@ Revision of LP theory and simplex algorithms
o Computational techniques for serial simplex

o Bound-flipping ratio test (dual simplex)

o Hyper-sparsity

o Cost perturbation (dual simplex)
o Computational techniques for parallel simplex

e Structured LP problems
o General LP problems
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Solving LP problems: Background

minimize f =c'x subjectto Ax=0b x>0
@ Fundamental model in optimal N
decision-making ‘Mi‘f;w::;
@ Solution techniques e
o Simplex method (1947) WAL
o Interior point methods (1984) AN Ti!_i
@ Large problems have \\\T:\N’f‘
o 103-108 variables SR
o 103-108 constraints \\\‘\\Hit

@ Matrix A is usually sparse and

STAIR: 356 rows, 467 columns and 3856 nonzeros
may be structured
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Solving LP problems: Background

X3
minimize f=c¢'x subjectto Ax=0b x>0

@ A vertex of the feasible region K C R” has

e m basic components, i € B
e n — m zero nonbasic components, j € N/

@ The equations and x are partitioned according to BUN

since the basis matrix B is nonsingular

° Reduced objectlve is then f = f + cN Xy, where f I'b
and ¢! =¢l —cIBIN

e For xy = 0, partition yields an optimal solution if there is
Primal feasibility b > 0; Dual feasibility €y > 0
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Solving dual LP problems: Optimality and the dual simplex algorithm

o Consider the dual problem
maximize fp=b'"y subjectto ATy +s=c §s>0

Equations, s and ¢ partitioned according to BUN as
AR P R I A b
N sN CN SN = CN + N SB

~ T
Reduced objective is fp = f — b sg

e For s5 =0, partition yields an optimal solution if there is
Primal feasibility b > 0; Dual feasibility ¢y > 0

Dual simplex algorithm for an LP is primal algorithm applied to the dual problem

Structure of dual equations allows dual simplex algorithm to be applied to primal
simplex tableau
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Primal simplex algorithm

N RHS

Assume b >0 Seekcy>0

Scan ¢; < 0 for g to leave N
Scan /I:\J,-/é\,-q > 0 for p to leave B B
AT

2
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Dual simplex algorithm: Choose a row

Assume €y >0 Seek b >0 N RHS

Scan E,- < 0 for p to leave B
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Dual simplex algorithm: Choose a column

Assume €y >0 Seek b >0 N RHS

Scan E,- < 0 for p to leave B
Scan ¢j/ap; < 0 for g to leave N/ B

2
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Dual simplex algorithm: Update reduced costs and RHS

Assume €y > 0 Seek b >0

Scan E,- < 0 for p to leave B

Scan ¢j/ap; < 0 for g to leave N/ B
AT
a
Update: Exchange p and g between B and N/ .
Update b := b — apag ap = bp/apg . en

~T . AT ~T o~y
Update ¢, :=¢, +apad, ap=—C4/ap,
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Dual simplex algorithm: Data required

N
Scan E,- < 0 for p to leave B
Scan ¢j/ap; < 0 for g to leave N/ B .
-
Update b := b — apa, ap = by/apq . en
Update €, =€, +apad, ap=—C4/apq

o Pivotal row 3; = e;,rB_lN

e Pivotal column @, = B_laq
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Dual simplex algorithm

Assume ¢y > 0 Seek b >0 N
Scan E,- < 0 for p to leave B
Scan ¢j/ap; < 0 for g to leave N/ B
AT
a
Update: Exchange p and g between B and N/ .
Update b := b — apa, ap = by/apq . en
Update €, = ¢, + aDEPT ap = —Cq/3pq
Wiy dos  work?
o Pivotal row @' = el B~1N b, x G
2 2 Objective improves by =2 each iteration
dpq

e Pivotal column @, = B_laq
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Solving LP problems: Primal or dual simplex?

Primal simplex algorithm

@ Traditional variant

@ Solution generally not primal feasible when (primal) LP is tightened

Dual simplex algorithm

@ Preferred variant
@ Easier to get dual feasibility
@ More progress in many iterations

@ Solution dual feasible when primal LP is tightened
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Simplex method: Computation

Standard simplex method (SSM): Major computational component

N RHS Update of tableau: N:=N-— a—AqA;-
Pq
B N b where N = B~1N
- @ Hopelessly inefficient for sparse LP problems
CN

@ Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via B™m,= e, BIRAN and @, =w]N  PRICE
Pivotal column via Ba, = a; FTRAN Represent B~!  INVERT
Update B~ exploiting B = B + (aq — Bep)e[ UPDATE
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Simplex method: Computation

Representing B~1:

Form B = LU using sparsity-exploiting Markowitz technique

@ L unit lower triangular

@ U upper triangular

Representing B~1:
o Exploit B = B+ (a; — Bey)e] to limit refactorization

@ Many schemes: simplest is product form
B = B+ (aq— Bep)epT = B[l +(a, — ep)epT] = BE

where E is easily invertible

Julian Hall High performance computational techniques for the simplex method 14 /47



Simplex method: Mittelmann test set

Industry standard set of 40 LP problems

Rows  Cols  Nonzeros [0 ploMe@s, e o)
Min 960 1560 38304 1/255 0.0005% 2.2
Geomean 54256 72442 910993 0.75 0.02% 6.5
Max 986069 1259121 11279748 85 16% 218.0

Mittelmann solution time measure

@ Unsolved problems given “timeout” solution time
@ Shift all solution times up by 10s
@ Compute geometric mean of logs of shifted times

@ Solution time measure is exponent of geometric mean shifted down by 10s
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Dual simplex: Bound-flipping Ratio Test (BFRT)



Dual simplex: Bound-flipping Ratio Test (BFRT)

@ General bounded equality problem is
minimize f = ¢ " x subject to [A /] x=b I<x<u
@ At a vertex, nonbasic variables x, take values v, of lower or upper bounds
e Equations and x partitioned according to BUN as
where xy = vy + 0, and b= B~1(b — Nvy)
@ For 8, = 0, the partition yields an optimal solution if there is

Primal feasibility I < b < ug Dual feasibility {,Cf Z x; = [

IN
o

G Xj = uj

-
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Dual simplex: Bound-flipping Ratio Test (BFRT)

@ Reduced objective is
fo=Ff—(b—NTsi —(u—b)Ts;
@ Suppose p € B is chosen such that Ep <y
so sp, is increased from zero
@ As fp increases, some s;, j € N is zeroed
o If x; “flips tlound" then Bp increases
o If still have b, < I,, then

@ s;j changes sign
@ s, can be increased further

@ In general
o Find {a1, s, ...} (easily)
e Sort breakpoints as {c,, a,, ...}
o Analyse dy =/, — Ep > 0 and (by recurrence) {d>, ds, ...} for sign change

@ Multiple iteration “progress”, with only one basis change and set of B/FTRANs
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Simplex method: Exploiting hyper-sparsity



Simplex method: Exploiting hyper-sparsity

Recall: major computational components

@ BTRAN: Form 7, = B_Tep
@ PRICE: Form 5; = ﬂ;-N
o FTRAN: Form a, = B~la,

Phenomenon of hyper-sparsity

@ Vectors e, and a, are sparse

~T -~ 1 -
@ Results 7, @, and a5 may be sparse—because B~ is sparse

o In BTRAN, 7, is a row of B~*
e In PRICE, 3; is a linear combination of a few rows of N
o In FTRAN, ?Jq is a linear combination of a few columns of B!
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Simplex method: Exploiting hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b

Optimal B for LP problem stair B~! has density of 58%, so B~ lp
. 0 . .
has density 2.5% is typically dense
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Simplex od: Exploiting hyper-sparsity

Simplex method: Inverse of a sparse matrix and solution of Bx = b

Optimal B for LP problem pds-02 B~ has density of 0.52%, so B~ b
has density 0.07% is typically sparse—when b is sparse
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Simplex method: Exploiting hyper-sparsity

@ Use solution of Lx = b

o To illustrate the phenomenon of hyper-sparsity
e To demonstrate how to exploit hyper-sparsity

@ Apply principles to other triangular solves in the simplex method
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Simplex method: Exploiting hyper-sparsity

Recall: Solve Lx = b using

function ftranL(L, b, x)
r=b When b is sparse

forall j € {1,...,m} do o Inefficient until r fills in
for all i: L; # 0 do
ri=r — L,JFJ
xX=r
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Simplex method: Exploiting hyper-sparsity

Better: Check r; for zero

function ftranL(L, b, x) When x s sparse
e Few values of r; are nonzero

r=>b
for all j € {1,...,m} do @ Check for zero dominates
if rj # 0 then @ Requires more efficient identification
forall i: L;#0do of set X' of indices j such that rj # 0
ri=1r — L,JI’J
X=r
Gilbert and Peierls (1988)

H and McKinnon (1998-2005)
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Simplex method: Exploiting hyper-sparsity

Recall: major computational components
o FTRAN: Form @, = B~ la,
® BTRAN: Form w1, = B~ e,

@ PRICE: Form 3; = 7T,;rN

BTRAN: Form m, = B~ "e, PRICE: Form @, = m] N

P
@ Transposed triangular solves
o LTx=bhasx; =b; — I x

i

@ Hyper-sparsity: Tl';— is sparse
8 @ Store N row-wise

o Hyper-sparsity: I; x typically zero - [Berin 57 se & el ER e of
o Also store L (and U) row-wise and o

use FTRAN code rows of NN for nonzeros in 71';—

H and McKinnon (1998-2005)
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Simplex method: Exploiting hyper-sparsity - effectiveness

Testing environment

@ Mittelmann test set of 40 LPs
@ HiGHS dual simplex solver
@ Time limit of 10,000 seconds

@ When exploiting hyper-sparsity: solves 37 problems
@ When not exploiting hyper-sparsity (in BTRAN, FTRAN and PRICE): solves 34

problems
Min Geomean  Max
Iteration count increase | 0.75 1.08 3.17
Solution time increase 0.83 231 67.13
Iteration speed decrease | 0.92 2.14 66.43
Mittelmann measure 2.57
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Dual simplex: Cost perturbation



Dual simplex: Cost perturbation

Dual degeneracy

o If some nonbasic dual values ¢} — ¢l B~1N are zero, the vertex is dual

degenerate

@ At a dual degenerate vertex, an iteration of the dual simplex algorithm may not
lead to a strict increase in the dual objective

@ Stalling or cycling may occur

Cost perturbation

@ Add a small random value to some/all of the cost coefficients ¢
@ Nonbasic dual values then (at worst) take small positive values

@ An iteration of the dual simplex algorithm yields (at least) a small positive
increase in the dual objective

@ When optimal, remove perturbations
@ May require simplex iterations to regain optimality
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Dual simplex: Cost perturbation - effectiveness

Results using Mittelmann test set

@ With cost perturbation: HiGHS solves 37/40 problems

@ Without cost perturbation: solves 27 problems

Min Geomean  Max
Iteration count increase | 0.80 136 7.21
Solution time increase 0.57 146 13.31
Iteration speed decrease | 0.49 1.07 4.02
Mittelmann measure 3.80
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Computational techniques for parallel simplex: Structured LP problems



PIPS-S: Stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize  ¢lxo + ¢/x1 + €Ix2 + ... + ¢fxn
subject to Axg = by
Tixo + Wixg = b
Toxq + Wh x5 = b
Tnxo + Wyxy = by

X0 >0 x1 >0 x>0 xy >0

@ Variables xg € R™ are first stage decisions

@ Variables x; € R™ for i =1,..., N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

@ The objective is the expected cost of the decisions

@ In stochastic MIP problems, some/all decisions are discrete
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PIPS-S: Stochastic MIP problems

N IS IN
= i} [

° Latitude N
IS
S

° Latitude N

39

-90 -88
° Longitude W

-90 -88
© Longitude W

@ Power systems optimization project at Argonne

@ Integer second-stage decisions

@ Stochasticity from wind generation
@ Solution via branch-and-bound

e Solve root using parallel IPM solver PIPS Lubin, Petra et al. (2011)
e Solve nodes using parallel dual simplex solver PIPS-S
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PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

T

minimize ¢{x1 + €lx2 + ... + ¢cixn + ¢fxo
subject to  Wix; + Tixg = by
W2X2 + T2X0 = b2
Wynxy + Tnxg = by
AX() = bo

x1 >0 x>0 xy >0 x0 >0
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PIPS-S: Exploiting problem structure

@ Inversion of the basis matrix B is key to revised simplex efficiency
B B
Wi T
B B
Wy Ty
AB
e WP are columns corresponding to n? basic variables in scenario i
B
T
: - B . . . .
° are columns corresponding to ng basic first stage decisions

TN
A B
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PIPS-S: Exploiting problem structure

@ Inversion of the basis matrix B is key to revised simplex efficiency

B B
W} T! we .
B= :
wg Tg wf Tf
AB
wg | 1
AB

@ B is nonsingular so
o W are “tall": full column rank

° [Wf‘ T,B] are “wide": full row rank

o Afis "wide": full row rank

@ Scope for parallel inversion is immediate and well known
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PIPS-S: Exploiting problem structure

e Eliminate sub-diagonal entries in each W# (independently)

A

@ Apply elimination operations to each T/ (independently)

@ Accumulate non-pivoted rows from the W? with A® and
complete elimination
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PIPS-S: Overview

Scope for data parallelism

@ Parallel Gaussian elimination yields block LU decomposition of B
@ Scope for data parallelism in block forward and block backward substitution

@ Scope for data parallelism in PRICE

Implementation
Written in C++ with MPI

Dual simplex

o

o

@ Based on NLA routines in clp

@ Distribute problem data over processors
o

Perform data-parallel BTRAN, FTRAN and PRICE over processors

Lubin, H, Petra and Anitescu (2013)
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PIPS-S: Results

On Fusion cluster: Performance relative to clp

Dimension Cores Storm SSN UC12 UC24

1 0.34 0.22 0.17 0.08
32 85 6.5 2.4 0.7

m+n=0(10") 256 299 45 67 68

On Blue Gene

m+ n = 0(10°)

@ Instance of UC12 C arat — N I
o m+n— O(10) ores lIterations Time (h) Iter/sec
e Requires 1 TB of RAM 1024 Exceeded execution time limit
) 2048 82,638 6.14 3.74
@ Runs from an advanced basis 4096 75732 503 418
8192 86,439 4.67 5.14
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Computational techniques for parallel simplex: General LP problems



HiGHS: Parallel simplex for general LP problems

Overview

@ Written in G+ to study parallel simplex
@ Dual simplex with standard algorithmic enhancements

o Efficient numerical linear algebra

@ High performance serial solver (hsol)
e Exploit limited task and data parallelism in standard dual RSM iterations (sip)
@ Exploit greater task and data parallelism via minor iterations of dual SSM (pami)

Huangfu and H
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HiGHS: Single iteration parallelism with sip option

o Computational components appear sequential
@ Each has highly-tuned sparsity-exploiting serial implementation

@ Exploit “slack” in data dependencies

FTRAN BFRT

ar
FTRAN DSE (T = B~'¢,)

T

UPDATE WEIGHT
ﬁ.T

UPDATE DUAL
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HiGHS: Single iteration parallelism with sip option

@ Overlap the expensive FTRAN with
PRICE, CHUZC, and then the
subsequent (cheaper) FTRANs

o Exploit data parallelism in PRICE to
form 5; = W;-N, and in the expensive

pass of CHUZC

@ Overlap the cheaper FTRANs, and then

the operations to update edge weights
and the reduced RHS

@ Other components performed serially

CHUZC1
(Logical)

! PRICE + CHUZC1
(Structural)

FTRAN
DSE

(r=DB"'e,)

UPDATE -
DUAL @ Only four worthwhile threads unless

JT ay Jaq ap n>> m so PRICE dominates
‘ Huangfu and H (2014)

‘ FTRAN ‘ ! ‘

UPDATE
WEIGHT

UPDATE
PRIMAL
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HiGHS: Multiple iteration parallelism with pami option

@ Perform standard dual simplex minor iterations for rows in set P (|P| < m)

@ Suggested by Rosander (1975) but never implemented efficiently in serial
N RHS

B ~
ap

y

o Task-parallel multiple BTRAN to form wp = B~ Tep
e Data-parallel PRICE to form ﬁpT (as required), and then data-parallel CHUZC
@ Task-parallel multiple FTRAN for primal, dual and weight updates
Huangfu and H (2011-2014)
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HiGHS: Multiple iteration parallelism with pami - effectiveness

Serial overhead of pami

@ HiGHS pami solver in serial: solves 34/40 problems

Min Geomean Max
Iteration count increase | 0.43 1.02 298
Solution time increase 0.31 1.62 5.36
Iteration speed decrease | 0.69 1.59 5.11
Mittelmann measure 2.08

Parallel speed-up of pami with 8 threads

Min Geomean Max
Iteration count decrease | 1.00 1.00 1.00
Solution time decrease 1.15 1.88 2.39
Iteration speed increase | 1.15 1.88 2.39
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HiGHS: Multiple iteration parallelism with pami - effectiveness

Performance enhancement using parallel pami with 8 threads

Min Geomean Max
Iteration count decrease | 0.34 098 2.34
Solution time decrease 0.34 1.16 6.44
Iteration speed increase | 0.38 1.18 2.75
Mittelmann measure 1.21

@ There is significant scope to improve pami performance further

@ Use pami tactically: switch it off if it is ineffective

Commercial impact

@ Huangfu applied the parallel dual simplex techniques within the xpress solver

@ For much of 2013-2018 the xpress simplex solver was the best in the world
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Summary

H. h ‘F | @ J. A. J. Hall and K. I. M. McKinnon.
g per ormanc mp €x Hyper-sparsity in the revised simplex method and how to

exploit it.

("] Many (more) a|g0rlthmlc and Computational Optimization and Applications,
. o o o 32(3):259-283, December 2005
computational tricks in serial
@ Q. Huangfu and J. A. J. Hall.
] Para“el Simplex has some impact on Parallelizing the dual revised simplex method.
Mathematical Programming Computation, 10(1):119-142,
performance 2018,

@ M. Lubin, J. A. J. Hall, C. G. Petra, and M. Anitescu.
Parallel distributed-memory simplex for large-scale
stochastic LP problems.

Computational Optimization and Applications,
55(3):571-596, 2013.

@ Tune techniques to problem at
run-time
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